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1. Introduction

For PDEs that enjoy the conservation/dissipation property, numerical schemes that inherit that property are often advan-
tageous, in that the schemes are fairly stable and yield qualitatively better numerical solutions in practice. For example, the
Cahn-Hilliard equation

ou_ o Pu
at:axz<pu+ru3+qaxz>7 (t,X)E(0,00)X(O,L), (l)

has a dissipation property

d [*(p o 1T 4 qfou
a/0 <2u 4 75(&) dx<0, t>0 2)

under certain boundary conditions. Here p, g and r are real parameters that satisfy p < 0, g < 0 and r > 0. Although the exis-
tence of the term related to the negative dispersion effect in this equation often makes naive numerical schemes unstable,
some numerical schemes that are designed so that they inherit the dissipation property (2) are proved to be stable and con-
vergent [5,8].

Recently, Furihata and Matsuo [7-9,14-17] have developed the so-called “discrete variational method” that automatically
constructs conservative/dissipative finite difference schemes for a class of PDEs with the conservation/dissipation property
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that stems from a certain variational structure. Originally, Furihata considered two types of equations in his first paper [7].
The first is the class of equations with the form

u (9?6
G- () G s0123.. xebl 3)

where 6G/du is the variational derivative, which is defined by

oG 0G 0 oG
U= ou ox o @)

This class of equations includes the heat equation and the Cahn-Hilliard equation. The second is the class of equations with
the form

2s+1 ¢
%;(%) % s=01,2,3,..., xc0,1], (5)

which includes the advection equation and the KdV equation. G(u, uy) denotes a certain energy functional, such as the Ham-
iltonian or free energy. The total energy of these equations is defined by

L
H(t) := / G(u, uy)dx. (6)
0
As is widely known, under certain boundary conditions, (3) has the dissipation property
dH
—<
dt = 0 (7)

and (5) has the conservation property

dH

T
Furihata proposed a method to derive finite difference schemes for (3) and (5) that inherit these properties after discreti-
zation, and his method has been extended to many other equations [9,14,16,17].

Until recently, the discrete variational method has been developed on uniform meshes only. However, especially in mul-
tidimensional problems, the use of nonuniform meshes is of importance, because the restriction to uniform meshes forces
the domains to be rectangles. Furthermore, even in one-dimensional cases, nonuniform meshes are often useful when solu-
tions exhibit locally complicated behavior.

In this paper, we extend the discrete variational method to nonuniform meshes. The extension is based on the “mapping
method”, where the change of coordinates plays an important role. For this reason, in the process of extension, we also show
that after the change of coordinates, it remains that the conservation/dissipation property is obtained from the variational
structure of the original equation.’

One of the most successful methods in structure preserving methods for PDEs is the mimetic approach ([1-4,11,19] and
references therein). In this approach, differential operators are discretized even on unstructured meshes in a coordinate-
invariant way while preserving the mass conservation, theorems of vector and tensor calculus, and the cohomology groups.
Although there seem to be many similarities between the mimetic methods and our method, they are different. For example,
whilst the quantities of interest in our method are from the variational structure, those in the mimetic approach are prin-
cipally from geometric aspects of equations.

This paper is organized as follows.

In Section 2, we consider simple one-dimensional cases to clarify the idea of the extension, which employs the mapping
method. Therefore, we briefly review the idea of the mapping method firstly in Section 2.1 and derive the conservation/dis-
sipation property from the variational structure after the change of coordinates. In Section 2.2, we introduce a summation by
parts formula on one-dimensional nonuniform grids, since it plays a very important role in the discrete variational method,
similar to that of the integration by parts in conventional variational calculus. By using that formula, we define the discrete
variational derivatives in Section 2.3. The dissipative and conservative schemes are defined in Sections 2.4 and 2.5,
respectively.

In Section 3, we show a conservative scheme for the KdV equation as an example and give a numerical example. In Section
4, we extend the discrete variational method to multidimensional nonuniform meshes. Although we consider two-dimen-
sional cases only for convenience of notation, the same procedure can be applied to cases greater than two dimensions. Be-
cause the integration by parts is replaced by the Gauss theorem in multidimensional cases, we show the discrete analogue of

0. (8)

! The basic idea has already been published in a Japanese paper [20].
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the Gauss theorem and derive the dissipative/conservative schemes using that theorem. As an example, a dissipative scheme
for the Cahn-Hilliard equation is provided in Section 5, which is accompanied by a numerical example.

The discrete variational method has been extended to equations other than those of the form (3) or (5), which include
complex valued equations and nonlinear wave equations [9,14,16]. Our extension is also applicable to such equations. As
an example, in Section 6, an application to a class of one-dimensional complex valued equations is described.

2. Extension to one-dimensional nonuniform grids

In this section, we extend the discrete variational method to one-dimensional nonuniform grids. We consider two classes
of equations.
The first class is equations of the form (3). Equations in this class are dissipative in the following sense.
Theorem 1. (e.g. [7]). Suppose that the boundary condition satisfies
o oG
ot duyl,

Suppose also that

L
P oG\ [P oG
|:<8Xpl %) (axzsp %>:| :07 p:17"'7$ (10)
0

if s > 1. Then solutions of (3) have the dissipation property:

dH
dt

The second class is equations of the form (5). Equations in this class are conservative.

<0, H(t)= /L G(u, uy)dx.
0

Theorem 2. (e.g. [7]). Suppose that the boundary condition satisfies
L
[@q 0 (ﬁ&) 0
ot duy|, ’ oxs du .
Suppose also that
L
P SG\ [ 0*P 5G
0

if s = 1. Then solutions of (5) have the conservation property:

dH
dt

These theorems are proved by the following lemma:

—0, H(t)= /OL G, uy)dx = 0.

Lemma 3. (e.g. [7]). Suppose that a solution of (3) or (5) satisfies the condition

ou 96"
ot duyl,
Then

dH (' ou G
hanlg et 12
dt o Ot éu (12)
Proof of Theorem 1. From Lemma 3 it follows that

d [t L ou oG
a/0 G(u, uy)dx = ; Eﬁdx

Substituting Eq. (3) into the right-hand side and repeating applications of the integration by parts give
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Proof of Theorem 2. From Lemma 3 it follows that

d * Lou sG
a/O G(u,ux)dx:/0 Eé—udx.

Substituting Eq. (3) into the right-hand side and repeating applications of the integration by parts give
Liro\*" G\ oG
- / O 051 0 gy
0 ox ou | éu
(Y 59) (2w [( (2 56) 2
b ox) ou\ox éu ox) ou (3u0

“cn (G R () )
o [ D) (G e [
S ()0 (@) )

It follows that

L

%/OLG(u,ux)dx_(—Uf/oL((%)s“%> ((gxyg)dx:(_1)5“/;((6%)5%) ((%)HI%)dx_o, -

Lemma 3 is proved by a kind of calculus of variations. In fact, by the integration by parts, it is shown that

E/Lc(uu)dxf/L @%_A’_%O_G dxf/L @%_O_uﬁﬁ dx + a_ua_GX:Lf La_u&dx
dt Jo EET Jo \ot du T ot Ouy “Jo \ot ou ot ox duy ot duyly — Jo ot ou
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In this sense, we call Lemma 3 “the variational structure” of equations of the form (3) or (5). By discretizing this structure, the
discrete variational method derives the schemes that preserve Theorems 1 or 2. It is notable that the Proof of Theorems 1 and

2 are based on the following three:

¢ the integration by parts;
e the variational structure, that is, the variational derivative that satisfies Lemma 3;
o the fact that the equations are written in the form (3) or (5).

The idea of the discrete variational method is to discretize these three. Thereby, in the discrete variational method,

e the summation by parts is introduced;

3 is introduced;

the schemes are defined using the discrete variational derivative so that they have a similar form to (3) or (5).

the variational structure is preserved, that is, the discrete variational derivative that satisfies a discrete analogue of Lemma

In the remainder of this section, we extend the discrete variational method to one-dimensional nonuniform grids, by
showing that these three can be retained after discretization, even on such grids. We propose use of the mapping method,
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in which the spatial coordinate is transformed to so-called “computational space”, which is a domain whose axis is the index
of the node. With this idea in mind,

o first, in Section 2.1, we show that the conservation/dissipation properties are obtained from the variational structure even
in the computational space;

and then,

e in Section 2.2, we provide a summation by parts formula on nonuniform grids;

e in Section 2.3, we introduce the discrete variational derivative on nonuniform grids and provide an analogue of Lemma 3;

e in Sections 2.4 and 2.5, we derive dissipative/conservative finite difference schemes, respectively, by using the discrete
variational derivative defined in Section 2.3.

2.1. The mapping method and the dissipation/conservation properties in the computational space

We set the N + 1 points 0 = xp < X; < X, < --- < Xy = L on the target domain X = {x|x € [0, L]}. The approximated value of
u(nAt, x;) is denoted by Uj?”). Because we wish to use the mapping method, the target domain X = {x|x € [0, L]} is first mapped
to the computational space & = {¢|¢ € [0, N]}. We denote this map from = to X by x(¢) and assume that x(¢) is a sufficiently
smooth function that satisfies

. dx
X(]):xj7 ]:dié>0’

where J is the Jacobian. In the mapping method, the differential operator 9/0x is discretized by approximating the right-hand
side of

9 _ (o
ox  \d¢) o¢
by some finite difference operators. For example, if we choose

dx ou ym _ ym

dicvngﬂ = Xj, 865 i1 i

for the approximation of dx/d¢ and du/9¢, then du/ox is discretized by
ou U -U"
X Xij1—X

We are to apply this method to the discrete variational method; however, it is not obvious whether the conservation/dis-
sipation property stems from the variational structure after the change of coordinates. Therefore, this must first be
confirmed.

The transformation of (3) to the computational space results in

du s (dé d\Z (G B
Ef(_‘l) (ad_ﬁ % cs7 5707172737'“7

where () _ is the transformed variational derivative

6GY _9G_ .10 (dE oG
su) "o aeVaxan )

This is a natural form of the variational derivative in the computational space, as later shown in Lemma 7. Since J = dx/d¢,
we can express this equation as

ou d\ [/ ded\*rde de dY dé d\*!6G B
a—*(* d?)(*ad?) (@fad?)(w) (%)C; $=0.1.23,... (13)

Similarly (5) is transformed to

8“7 dé d 25+1 5G -
a-(@ar) (w), s-0123-
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and this becomes
. d¢ d\* (oG 3
( )(dxdf) <E>cs7 s=0,1,2,3,... (14)

Remark 1. In the above, we denote dx/d¢ in two ways, dx/d¢ and J = dx/d¢&. Although these are clearly the same operators,
these two are distinguished, because they are discretized in different manners in the later sections. dx/d¢ is discretized to
approximate dx/d¢ in the transformed differential operator d/dx = d¢/dx - d/d¢, and J approximates the Jacobian in the
transformed integral [ -dx = [.Jd¢. Similarly, since J - d¢/dx = 1, it is verbose to express J - d¢/dx and other similar terms, but
we do not omit them for the same reason.

Theorems 1 and 2 in the computational space are given as follows.
Theorem 4. (Theorem 1 in the computational space). Suppose that the boundary condition satisfies

[au acr” B

ot ou, (15)

&=0

Suppose also that

e 0\*Pde de o (dé 9\ (oG de o\ ooy \TT
K(M) o) (o)) (@) (0),)] -0 pmros o)

if s > 1. Then the solutions of (13) have the dissipation property:

dHcs
dt

<0, Hlt / G(u,uy)Jdé.

Theorem 5. (Theorem 2 in the computational space). Suppose that the boundary condition satisfies

w061 [(qdz oy o6y VT
L Ot Ouy 0 o dx 9¢ ou cs 0 o

Suppose also that

- E=N
dé 9\P' /9G dé 9\*"P o6\ | B
() GGG, -0 pmres v

if s > 1. Then the solutions of (14) have the conservation property:

dH
Tdr

To prove these theorems, we use the integration by parts that is transformed to the computational space.

=0, H(t / G(u,uy)j dé.

Lemma 6. (The integration by parts in the computational space). Let u(¢) and v(¢) be functions on [0, N] that satisfy

P%‘”’Lo =0 (18)

)

Proof. Lemma 6 is immediately obtained, because this is just a transformed form of the integration by parts. However, since
we later discretize this lemma by the mapping method, we prove it by using calculations on the computational space only.
By applying the integration by parts with respect to &, we have

/ ]u<j}c< ccllz/>d€ —/ON v <—]u> {]%uvri::—/olv vd% <%ju>df:—/()%v(’%%(%ju))dé O

Now we show Lemma 3, the variational structure, in the computational space:

Then
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Lemma 7. Suppose that a solution of (3) or (5) satisfies the condition

du d¢ 9G]

[ﬁf o m} L0 (20)
Then

dHs [N ou 5G\ _ d¢ G

i Lo ) e (o), ~5 s 0dw) @

and (%) , satisfies
56\ 4G
ouj  ou’

Proof. By the chain rule, we obtain

dH, d (N N /786G ou G duy NG ou G dé auy) .,
ac =t ), 9= [ (g taw e pee= [ G geer [ (o 32 )¢

By applying the integration by parts of the form shown in Lemma 6, we have

| w0 o) pe- [ () e @)

For the latter part, we have

6) 9610166 06) 06 60 06 _06_0 06 _iC
ou/ a dx duy a a

ou dx 9 ouy, ou Oxouy, ou’
since ] = dx/d¢é. O

Thus, we have confirmed that the variational structure is retained in the computational space, so we can now proceed to
prove Theorems 4 and 5.

Proof of Theorem 4. By Lemma 7, we have

dHs N ou (6G .
dt _/0 §<E>J 4

Substituting Eq. (13) and application of the integration by parts in Lemma 6 give

SR e e Ga) G, 6 s

LR @ad ) (), }{@' ) (). }f“f

= ‘/0 {(‘f df) (‘gd%)ﬂ (gf% (?g) <§f< c?if B } & dé }]dé'
.

We continue in this fashion to obtain
dg d
{ dx dé 5u> }J d¢

N o d de d\*?/d¢ d¢ d dcd
7_/0 <_J d_é><_&d_é> (&jadJ(dxdf

L s () HEY @) e
G ED @ L&) e

2

@) ().} =
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Proof of Theorem 5. By Lemma 7, we have

%(/()Nc(u,ux)fdfz./;vﬁ< )”

Substituting Eq. (13) and application of the integration by parts in Lemma 6 give

[ a9}
LR H0 ) () o
LR G @ HEDE

We continue in this fashion to obtain

e [ (. ) s

{0 H L)
o [ ) D ) o

The last equality shows that this value equals 0. O

2.2. Discrete symbols and a summation by parts formula on nonuniform grids

In this section we introduce symbols that are useful for notation and show a summation by parts formula on nonuniform
grids. As in the previous section, we divide the interval [0,L] into nonuniform meshes with nodes

0 =2Xp <X; <X <--- <Xy = L. The approximated value of u(nAt, x;) is denoted by U;"). In what follows, §'s with suffixes de-
note difference operators in the computational space, that is, approximations of 9/0¢. For example, we write the forward

difference operator in the computational space as &, U = U U(” , the backward difference operator as

j+1

(),Uj = U}" - U}fl and the central difference operator as bCUj = (U

j+1 U(" )/2 We denote the approximated value of

dx/d¢ by (x.); or similar notations, which may be set, for example, to (x:); = X1 — X;. (X;);'s are used to approximate the val-
ues that are denoted by dx/d¢ in the previous section. We also denote the positive weights by w;’s that are defined so that
ZJN: oW; approximates the integral operator. w;’s are used to approximate the values that are denoted by J in the previous
section. J, (x;); and w; are chosen arbitrarily, unless otherwise specified.

To discretize Lemma 6, we introduce the useful notations:

Definition 1. For a finite difference operator ¢ with the o-point stencil
o
Ui =" alj,
k=—o
we define 6 by

o
5*Uj = — Z afl<Uj+k-

k=—o

Definition 2. Let § be a finite difference operator with the o-point stencil that is represented as
o
ou; = Z axUj .
k=—o

Let (x:); be an arbitrarily chosen approximation of dx/d¢ and w; >0 be the weights that are defined so that ZjN: oW
approximates the integral operator. For any sequences U; and V;, we define boundary term operators i, ; . ) y{UiH AV
by
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N N+o N N+o
2 {ULAVID - Z S au(wi ' uv) + > Y a(wix Uvs),
=N—o+1 k=N+1 Jj=N-0o+1 k=N+1
-1 -1 o—-1 -1
DUV - ZZajk(wj ka)+ Zaj"k( Ui )
j=0 k=—o j=0 k=-—o

where a;, is defined by

i 7{a,j+k (k=j—oj—oa+1,....j+0—1,j+0),
70 (otherwise)

and a;, is defined corresponding to ¢" in a similar way:
i = ai]urk (ICIj*OC,jf(X%»l,...,j#»OCf1,j+0(),
ik 0 (otherwise),

a,j = —0a_g.

My .00 QU AV3) and g5 o) y({Uj},{V;}) approximate UyVy and —U,V), respectively. An example is provided in Re-

mark b Jlow We now give the summatlon by parts formula:

Lemma 8. Let § be a finite difference operator that is represented as

(SU]‘ = Z akUHk

k=—o
and (x:);'s be approximated values of dx/d¢. For any sequences U; and V; that satisfy
* ),-)({Uj}a Vih + ﬂ<7,a,(x5),)({uj}7 {vih) =0, (23)

a summation by parts formula
N N
S wili(xe) oV = =Y wiVw s <(X¢){]WJUJ> (24)
=0 =0
holds.

Remark 2. The condition (23) corresponds to the condition (18) in Lemma 6. To clarify this, let us consider the simplest case,
where uniform grids
(Xc); = wj = Ax

and the central difference operator § = §. are employed. In this case,

12 (k=-1)
oU; = j( i1 — Z aUpg, a=1, @=<:0 (k=0)
= 12 (k=1)

and hence a; is
i (o 0, -1/2, 0, 1/2, 0, )
ik = k=j-2 k=j-1 k=j k=j+1 k=j+2

The central difference operator is self-adjoint in the sense that 6" =0 and @, = @;x. The boundary term operators
become

N N+l N N+l
NUORIEDY Zajk(wj UV'«)+Z 3y jk(wk B IAY )
j=N k=N+1 j=N k=N+1
_ 1
= GNN+1WN( ) UNVN+1 + aNNHWNH (X:f)NLUNH Vy = E(UNVNH + Un:1Vn)

and

0 -1

oy {UEAVIY = Z Z ajk(WJ Xe); ka) +Z Z ]k(Wk V])
Jj=0 k=-1 Jj=0 k=-1

i} B ~ _ 1
=do_1Wo(X:)g UoV 1 + a5 W 1(x:) U 1V = —5 (UoV1 + U_1Vy).
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Thus, the left-hand side of (23) is

1 1
3 (UnVni1 +Unia V) — E(Uovq +U_1Vy),

which is an approximation of (18).
Remark 3. Examples for the boundary conditions that enjoy condition (23) include the Dirichlet boundary condition
Uj=V;=0 foralljsuchthatj>Norj<0 (25)
and the periodic boundary condition
Uinit =Uj, Vi =V, %) = %) Wina =w; for all j. (26)

These are confirmed in the following way. Under the Dirichlet boundary condition we have

N N+o N N+o -
s ULV = >0 3 ar(wix) UV + Y0 Y d(wiix) ' UkY)
Jj=N-0o+1 k=N+1 Jj=N-0o+1 k=N+1
N N+o N N+o
= 3 Y au(wx'U0) + >0 a (w0 V) =0,
Jj=N—0+1 k=N+1 Jj=N—0+1 k=N+1

A similar calculation yields 20x)) ({U;},{V;}) = 0, and combining these gives (23). In the case of the periodic boundary
condition, we have

N N+o N N-+o
s 0 (U V3D My (U Vi = 35 32 G(wia) UV + YD (Wil UY))
Jj=N—0+1 k=N+1 Jj=N—0+1 k=N+1
-1 -1 a—1 -1
> au (W) UV + G (wixe), UV, )
j=0 k=—o J=0 k=-o
N o1
=Y Za,k(w, ka)+ 3 &*k(wk(xk)k Ukv])
Jj=N—-o+1 k=0 j=N—-o+1 k=0
a—1 N - -1 N
3> au(w UV Y DD d(wix) UK
j=0 k=N—o+1 j=0 k=N-o+1
N o— N o—1
= Z ajk(Wj(Xc)j U]Vk) - Z am(Wk(Xk)k Ukvj)
Jj=N—-o+1 k=0 j=N—-o+1 k=0
a1 N -1 N
+ Z Eljvk(Wj(Xi)]ﬂUij) — Z dkj<wk( ) UkV> =0.
Jj=0 k=N-o+1 j=0 k=N-o+1

Remark 4. It is common to use the inner product in order to derive summation-by-parts-type formulas [1,12,13,19]. The
summation by parts formula (24) in Lemma 8 is comprehensible, if it is represented by using the inner product as well.
We see it by an example where the difference operator ¢ is the forward difference operator § = §, and the boundary condi-
tion is given by the Dirichlet condition (25) or the periodic boundary condition (26).

Firstly, we compute the difference matrix D that represents §. When the Dirichlet condition is imposed, we have for j # N

oUj = Uj1 — U
and forj=N
0Uy = Uny1 — Uy = —Un.
Therefore,
Uy -1 1 0 0 O 0 Uo
oUq o -1 1 0 O 0 Ui
oU, o 0 -1 1 O 0 U,
oUn_> o -~ 0 0 -1 1 0 Un_>
oUn_1 o . .. 0 0 -1 1 Un_1
oUy o - -+ -~ 0 0 -1 Uy
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and hence
-11 0 0 O 0
0 -1 1 0 O 0
o 0 -1 1 O 0
D= S
0 0 0 -1 1
0 -0 0 -1 1
o - - . 0 0 -1
Similarly, we have for j # 0
o'U; =U; — Uiy
and forj=0

§'Uy = Uy — U_y = U,

and hence the difference matrix for 6*, which is denoted as D*, is

1 o o0 o o --- 0
-1 1 0 0O O --- 0
o -1 1 0 0O --- 0
D — O
o -~ 0 -1 1 0 0
o - -~ 0 -1 1 O
o - - . 0 -1 1
In a similar way, when the periodic boundary condition is imposed, the difference matrices become
-1 1 0 0 O 0 1 o o o o0 - -1
o -1 1 0 O 0 -1 1 0 O O --- O
o 0 -1 1 O 0 o -1 1 0o O -~ O
D— ST ) S . . L . .
o -~ 0 0 -1 1 0 0 0o -1 1 0 O
o .. ... 0 0 -1 1 o -~ - 0 -1 1
1T - e o0 0 -1 o - -+ - 0 -1 1

Note that these matrices satisfy D* = —D".

Let matrices W and X be W = diag(w;) and X = diag((x:);). Let vectors U and V be U = (Uy,...,Uy) and V = (Vo, ..., Vy).
Using these notations we can rewrite

N
ZWIUI ((Xi)j_lévj) = <U1X?1DV>W7
=0
where (U, V), := UTWV is the inner product with the weight W. Since the adjoint operator of X' D with respect to this inner
product is W™ 'D"X"'W, we have
(U,X7'DV),, = (W 'D'X'WU, V),
and
= (W (=D)'X'WU,V),,.
Rewriting this to the form with operators, we have
S 1
- — ijvjwj‘lé* ((xg)j’ WjUj),
=0
because —D" corresponds to &*. This coincides with the summation by parts (24).

Furthermore, the above argument is a discrete counterpart of the fact that the transformed integration by parts (19) is
expressed as
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by using the adjoint operator of the differential operator d/dx - 9/9¢ with respect to the inner product (., -), whose weight is
the Jacobian.

Proof of Lemma 8. In a straightforward way, we obtain

N
ZW]U]<(XC) ) Z Z Wj akVHk
j=0

Jj=0 k=-u

N N-+o a-1 -1

N
=3 S wili); @i+ Z 3 a]k(wj 1y, vk) + . (wj(xc;);lujvk)
j=0 k=0 Jj=N-o+1 k=N+1 j=0 k=-o
N N N+a -1 -1 .
= Z ZWkUk( akJV, Z Z ajk(wj X( UJVk> + Qj k (Wj(Xé); Uij>.
j=0 k=0 Jj=N—o+1 k=N+1 j=0 k=-o
Using a; = —a;;, we obtain
N N N+o
S RTINS S SENUTSUNARS 3) SERTS AT
j=0 k=0 Jj=N—0+1 k=N+1 Jj=0 k=-0o
N o N+o
=33 wl(x)av; + Z 3 Jk(wk Ukv)
j=0 k=-o Jj=N—0+1 k=N+1
-1 -1 N+a a-1 -1
+ (Wk( UkV> Z Z ajk(wj XC UJVk> +Z Z ]k(Wj U]Vk>
j=0 k=—o Jj=N—o+1 k=N+1 j=0 k=-o

_MZ
[

T
<)

WU GV, s (U VD) 4 B (U1 VD) = — 30 37 Wil

=—0, j=0 k=-—o

The last equality is due to (23). Rewriting this to the form with difference operators, we obtain

:—ZW]VW 15 ((xc) w,U) O

2.3. Definition of the discrete variational derivative

In this section, we introduce the discrete variational derivative on one-dimensional nonuniform grids. The discrete var-
iational derivative will be defined by an approximation of the variational derivative in the computational space

oG %7 1 E) ]df oG
ou) ou dx ouy )
Suppose that the energy functional G is given in the next form:

G(u, uy) Zf: )81(ux), (27)

where f’s and g;’s are differentiable functions. We define the discrete energy functional by
S rgmy (S 1 m
= l§1ﬁ<Uj )(M, E]gl<(xcf)l‘mjél.muj >>7 (28)
— m=

where each (x )sz is an approximation of (x:) and §,,, is a difference operator, both of which can be chosen arbitrarily. The
summation with respect to m is introduced in consideration of the situation where each g; is approximated by using more
than one difference operator. An example for the KdV equation that is shown in Section 3 helps understand the meaning of
this summation. We define the discrete total energy H™ by

N L
=Y WGa(U™); ~ / G(u, uy)dx, (29)
P Jo

where w;’s are the weights that are defined so that ZjN: oW, becomes an approximation of the integral.
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Definition 3. We define the discrete variational derivative of Gd(fﬂ“))j by

K M,
( U 51Gd ) :Zl < _‘acld_’ ) _Wlilé;‘m (X );mjw (n(?r?)d 7(n) s (30)
s(Umn,gm) ) = Mg\ \o@emn,0m) ), - 8<U 7Ux) |
m,j
where
G\ dh g (koY) + &) oum U o
(U1, Gy imj “ \d(@en, gm) i ) )
(n+1) (n)
e\ (M) AU (e )
8(0}({n+1)7(j}({n)) 1 .' 2 d(f]"“ﬂ“”) .7
mj mj
S Ul('w i Uj")) (n+1) ()
( df; ) ) T <Uj #U; >, )
d(Um+n, gm)
" & (U;")> (otherwise),
(ot e (iid i) -
ﬂd# = ®imjoimU}" " =) oum Uy <( imjOm U (X )’”’Jélmu >" (34)
d<Uf(”H)7 U)((n)) . .
" dTJi(( DimioimUy" ) (otherwise).

The definition is chosen carefully, so that the variational structure is retained after the discretization in the sense that a
discrete counterpart of Lemma 7 holds.

Lemma 9. Suppose the condition

M (n+1) (n)
i 1 zl: 1 Uy -G ‘ 9Gq
£ My 2~ (+3m*)im;) At ’ a(U(nJrl) i n)) -

U§n+1) _ U@n) aG
+.u(7.o', ®) { ! A 5, = 1d = =0
X&) m j t 8<U)(‘n+ )’ UE(m) .
Imj
is satisfied. Then
(n+1) (n)
1o gy sy (U U Gy
— —_HMY = ) _ _ .
A ) j;w, ; .0 (35)

Proof. By (31) and (32) we obtain

1 o gy 1 & E (£ (ymD 1 & 5 Un+1 5
B( — >7—tZZW] f((j ) MZ&(( )ImJ Lm ) (1 ) Ml Zgl ImJ 1mU )

m=1

1
vy wss (WU 9Ga
=0 =1 m= At 6( (n+1),U(n>) i

S o 2G4
Lmjolm At 8(U§n+l)7ﬁ(n))x Imj ’

Applying Lemma 8, we obtain

(i)
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_ ZN: ZK: w; ﬁ’: U}(_HH) — Uj(n) 9G4 Cwils (X.)’l Wi 9Gq
— = M, At ooy gmy ) L | X&) miWi 6(0§"+])7ﬁ("))x s

j=0 m=1 Im.j
(n+1) (n)
k(- Gy
’ZW’ At gty gmy ) H
=0 S(UmL, Um) /.

2.4. Design of schemes for the dissipative equations

As is usual in the discrete variational method, we design schemes so that they correspond to (13) for the dissipative equa-
tions and to (14) for the conservative equations. Defining the schemes in this way allows us to obtain the dissipative/con-
servative property in almost the same way as Section 2.1.

We define the scheme for the dissipative equation (13) by

M:—(—wﬁéz)( (Xe)ef 021 ) -+ (=301 ) (e witkedyjon ) ((xe)g2) -+ ((xe)i s 1) (%)) )

At
x # . (36)
5(Un+1 Ul )) j

(X¢)mj @and o, (m=1,...,s) are arbitrarily chosen depending on, for example, the accuracy of the scheme. For this scheme,
we claim a discrete counterpart of Theorem 4.

Theorem 10. Let w;’s be positive. Let U}m be a numerical solution of the scheme (36) under the boundary condition that satisfies
the assumption of Lemma 9 , and

Heeiya) (1005 ) -+ (015507 ) (Do) on ) (%) 02) -+ ()51 ) (%)) )

0Gy 4 1 0Gq

By ()1 0) -+ (02107 (i witxfon ) ((xe)gfoa ) - () o) (x0)s/ o)

5Gd 1 -1 5Gd _ _
<m>; (Xe)s_pi2jOs—ps2 " (Xe)gj Os (m)}) =0 (p=1,....9),

if s > 1. Then
— (H("H) _ H(ﬂ)) <0. (37)

Proof. This theorem is proved in almost the same way as Theorem 4. By Lemma 9, we have

(n+1) (n)
1o gy N (Y U Gy
A H™Y) =Y "w AL 3.0

=0

Substituting scheme (36) and application of the summation by parts in Lemma 8 give

- .ZWj{ (v 100) (=00 00 ) (=) (o wixjon ) - () <5(0mi]G; 0<n>)>1} (&U(nﬁi 0<n>)>j
- 7j:iow {( (Xe)sf 0s 1) ( (Xe)2j 91 ) (( SHVCOn ()1) ((Xé);f 55) <5(U(n5+(1;)‘j[j(,,))>j} {leo‘s <()(C’ ni?—d i n)))]}
== 50 Wj{ (—w;l(s;i]) (_(X:)EJ15 ) <(X<) jWi(Xe)s, !51> <(x‘) 05) (b(f](n(ilc)d U(n)))j} {(XC)S;(; (a(UmiGdU n)))]}'

J

We continue in this fashion to obtain
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:,-iowf{wf*léiz)---(m}&)(<xf>1}wf<x:>1}61>---<<xé>sfﬁs> (w‘mm)}
{<< Atyer) (610 (ﬁ) }

N

S| Com) i) () (S, | o) (o) ()
S o) (038) () 1 o) ) (m0) (i) |

j=0
2
Y - : e
B in) - () (i) <o

2.5. Design of schemes for the conservative equations

We define the scheme for the conservative equation (14) by

U;HH) B U;n) _ ~15* 15 “15t 15 15 -1 15 0Gy
= () (o) - (zgon ) (ongoe) (agon) - (o) (05 0) s o G ERTIR
j
(38)
d. is the central difference operator. (x;),,; and d,, (m = 1,...,s) can be chosen arbitrarily. We claim a discrete counterpart of

Theorem 5 for this scheme.

Theorem 11. Let U}”) be a numerical solution of the scheme (38) under the boundary condition that satisfies the assumption of
Lemma 9 and

His sy ({ ((XE);}51> <(Xct);f5s> (W%) }-, { <(X5)f}51> <(Xc) ) ( O nHG) o )) })
) j
+“(“””({<“9450'“(@9u“0 aawffam»>}’{(“oﬁél'“ D0 ( e, ) }):0' >
b j .

We also assume that

/ (+.05_p 1W]) ({ <(‘{f)s—p+1,k s F) <( Lf)sfp.kt)s p ]) <(x) K ><(x) ’ 0 )((x“)]}(é > <( :) ‘k ) <75( W) }7
5 X &)2k91 <1k ) k

Ay ({ (D000 ) (0t ) -+ (02007 ) (oD rdoe ) ((edrgon ) -+ (ko))

Gy -1 < -1 oGy _ —
(Mﬁmﬂml}{m%MﬁPW“WM&5@wmmwf e

ifs > 1. Then

1

N (H™D —H™y = 0. (40)

Proof. This theorem is proved in almost the same way as Theorem 5. By Lemma 9, we have

(n+1) (n)
T oo gy N~y (U Y Gy
At(H H )7ZW] At S(Um+1), g ;
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Substituting scheme (38) and application of the summation by parts in Lemma 8 give
N

-Som o) 5. (i) (i) (i) - <<x>was>((w;? ) Gaea)
’ j

7 o
——im{((xas;é:1)~~~((xg)z.}ai)((xm}éc)((xix}é])-~(<x5>s.}(x)( }{ w'5) ( U(nicfgm)))j}

j=0
0Gq
(n+1)7f](n)) ; ’

N

o o) ) o s (0 ) H o

We continue in this fashion to obtain

<-1>zzwj{<wga:2>---<<x¢)2;.a:><<x5>l;ac><<x§>1;al)~-<<x§>s;as) () }
j

Since §; = d., we have

o Eonf i) ) ) et o) s ) |

=0. g

Remark 5. Generally, schemes (36) and (38) yield a nonlinear system and hence a numerical solver is required. Although
this increases the computational costs from naive schemes more than a little, the quasi-Newton methods solve the equations
within a realistic time (see the numerical examples below). If more efficient methods are preferable, conservative/dissipative
linearly implicit schemes can be constructed by modification of these schemes in a similar manner to [18].

Remark 6. Although properties such as existence, uniqueness, stability and convergence of the numerical solutions are not

ensured here, they have been investigated for some specific PDEs in the case of uniform meshes (e.g. [9,10]). Therefore, the
same results are expected to be obtained in a similar way for the case of nonuniform meshes.

3. An example in the one-dimensional case

In this section, we show an example for the KdV equation

Ur + Ully + PP Ugey = 0. (41)
It is well known that this equation can be written in the following form
946G 15 2
Ut—ag7 G(uvux)—*gu 751,[,(. (42)

3.1. An energy conservative scheme for the KdV equation

The energy functional G(u, uy) is written in the form of (27) with K = 2 and

1 P,
fl(u):—éu3, HLw)=1, gu) =1, gz(ux):_ju
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The discrete energy functional is introduced so that it corresponds to these. First, on the given nonuniform mesh, we
introduce

(ealy =X+ 1) a0, ()= x() -1, wy = DAL

For [ = 1, we set M; = 1 and approximate the term f; (u)g, (ux) by

_ 1 11 pmy?
fl(u)gl(ux)*_gu —_BM_1<U]‘ ) .

With g; (ux) = 1, the differential operator is not included in this term. Therefore, the definitions of (x),,; and ¢, ; do not af-
fect the definition of the scheme, and so we formally define them by (x,g)]‘].j = (x5,+)j, 011 = 04

The term that corresponds to [ = 2 includes the differential operator. It is approximated using the average of the value
from the forward difference 6, and that from the backward difference _. For this reason, we set M, = 2 and

2 2
_ra, 1 1 m 1 m
LWy (u) = 2 the = 2 M, ((( Xet); U " (x:-); >4 ’

which gives
(Xe)aaj= (Xet)py 021 =04, (Xe)ypj= (Xe-);, S22 =0_.

The discrete variational derivative is defined by (30)-(32):

5Gq 201 3 9Gq . 9Gq
(5(U(n+1> 0<n>)> :Z_z o(0ms, gm) =W O | i | = = ’
’ j =1 m=1 ’ ILmj 8<Ux s UX ) Lmj

G, e (U}nﬂ)>3+(U}")>3 ( .
) 114 ° (e

=0,
1 1451 1U e (Xé)l,ll.jéliuj('n))

-0,

2 2
( 1o ) ((9ayonr ™)+ ((xadyfent)”)
¢ . 2

2
(1+1> <(X“)£11j521U(n+])> <(XC)21J521U )
("g)zl;‘)llun+1 (X;)21J521U

2 2
( 1-1 ) ((xe)2by022U )"+ (o) by022U")
2

2 2

-1 (n+1) -1 (n)

0Gq 7_V_2<1+1> <(Xé)2l2j622u ) _<(XE)ZZJ622U' ) :_ﬁ(xz ) 'o <U§"+”+U(”)>
8(0,(‘"“),0,((")) . 2 (xc)zzjézzunﬂ (X<)22,1522U 2 el J

2
The scheme is defined by (38) with s =0

(n+1) (n)
U -y —wie 0Gy _ .
At I S0+ ) ;
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By substituting the discrete variational derivative, we obtain the scheme

2 2
U(n+1) . U(n) <UJ§n+l)) + U}(n+l)UJ§n) + <Uj(n)>
j = L —ws

s )0 (570 + o) e ) (0 <)

This scheme is the same as that by Furihata [7] if the nodes are placed uniformly.
3.2. Numerical example

We solved the KdV equation numerically using scheme (43). The problem is set in the same way as the famous experi-
ment by Zabusky and Kruskal [21], where the domain is set to [0,2] and the initial condition is given by

u(0,x) = cos(7x).

The boundary condition is periodic. We set y = 0.022. Zabusky and Kruskal reported that the solution exhibits a sharp slope
near x = 0.5 at t = 1/m. We compare the numerical solutions that are obtained using a uniform mesh and a nonuniform
mesh, as shown in Fig. 1, in which the nodes are concentrated near x = 0.5. Both meshes consist of 55 nodes. The spatial
intervals of the nonuniform mesh are approximately 0.005 and 0.06 at the finest coarsest areas, respectively. The time inter-
val is At = 0.0001. We used MINPACK to solve the nonlinear systems. The total computation time is almost the same for each
case and is approximately 10 seconds with a 3.00 GHz Intel Core2 Duo CPU (just one core is used).

The numerical solutions at t = 0.44 using the uniform mesh and the nonuniform mesh are shown in Figs. 2 and 3, respec-
tively. The solid line in each figure is a numerical result obtained using a finer uniform mesh that consists of 400 nodes. By
comparing these two figures, we deduce that the use of the nonuniform mesh can improve the numerical solution in the
sense that the oscillation near x = 0.6 can be captured on the nonuniform mesh, unlike that for the uniform mesh.

The time evolution of the energy for the case where the nonuniform mesh is employed is shown in Fig. 4, which confirms
the energy conservation property stated in Theorem 11.

4. Extension to multidimensional nonuniform grids

In this section, we extend the discrete variational method to multidimensional nonuniform grids. In multidimensional
cases, notation becomes extremely complicated. For this reason, we consider only the two-dimensional case, although exten-
sions to problems greater than two dimensions are obtained in the same manner.

0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
X

Fig. 1. The nonuniform mesh used in Section 3.2.

"fine mesh ———
uniform mesh  +

Fig. 2. Numerical solution at t = 0.44 using the uniform mesh. The solid line is the solution obtained using a finer uniform mesh, which consists of 400
nodes.



4400 T. Yaguchi et al./Journal of Computational Physics 229 (2010) 4382-4423

distribution of grids
o o A

15 T T T T T

fine mesh ——
nonuniform mesh  +

Fig. 3. Numerical solution at t = 0.44 using the nonuniform mesh. The solid line is the solution obtained using a finer uniform mesh, which consists of 400
nodes.

-0.0024201890150 T T T T T
-0.0024201890151 1

-0.0024201890152 1
-0.0024201890153 1

-0.0024201890154 1

-0.0024201890155 1

Total Energy

-0.0024201890156 E

-0.0024201890157 1

-0.0024201890158 1

-0.0024201890159 1

-0.0024201890160 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6

t

Fig. 4. Time evolution of the total energy when the nonuniform mesh is employed.

4.1. Target equations

Here we consider the following equations on a two-dimensional domain €, which are two-dimensional analogues of the
equations considered in the previous sections. We assume that a sufficiently smooth homeomorphism exists between Q and

the computational space.
For the two-dimensional cases, the variational derivative is defined by

oG _9G 9 9G 9 9G

ou’ ou  Oxouy 9y ouy,’
The dissipative equations that correspond to (3) become

ou

9%\ G
el s+1 it
ot (=1) oxx= - gy | ou’ (44)

(t,x,y) € (0,00) x 2, s=0,1.

We consider only s = 0, 1, because few equations exist with s > 1 in multidimensional cases. Equations of this form enjoy the
dissipation property.

Theorem 12. Suppose that the boundary condition satisfies

ou (9G 9G\ '
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where n = (ny,ny)" is the unit normal vector to the boundary and ds is the area element. Suppose also that

/‘5u(v—— )ds:O (46)

if s = 1. Then the solutions of (44) have the dissipation property:

G <0 HO = [ Gl u)dxdy.

The conservative equations that correspond to (5) become

ou 0 0 oG
ot~ <&+a_y> S (txy) € (0,00 x Q. 47)

Theorem 13. Suppose that the boundary condition satisfies

' 3G 9G " (0G)?
/dQ a0 <8ux 8uy) -nds =0, /ag <(>7u> (ny +np)ds =0, (48)

where n = (ny,n,)" is the unit normal vector to the boundary and ds is the area element. Then the solutions of (47) have the con-
servation property:

dH

ac 0, H(t)= LG(u,ux.,uy)dxdy. (49)

We show “the variational structure” of these equations:

Lemma 14. Suppose that a solution of (44) or (47) satisfies the condition

oG oG
/ m(&uaw) nds =0. (50)
Then
dH ou oG
- /%dedy (51)

Proof. By the Gauss theorem, we have

dH d 0G ou  9G du,  9G duy
da ~de GW th, ty)dxdy = / <8u ot Fou, ot *a@ﬁ)d"dy

oG 9 oG 0 oG oG oG oG ou
—/(w*m@*@a@) o & d“/w ot (8ux 8uy> nds = /(Tad xdy. O

Proof of Theorem 12. Applying Lemma 14 gives

dH / oG ou

dt ou ot dxdy.

In the case where s = 0, substituting the equation yields
/Z—g%d /Q(i—g)zdxdygo
In the case where s = 1, applying the Gauss theorem one more time gives
e L[ i) D)oo (55 oo S
:_/<<£(+£,>5G> dxdy < 0. O
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Proof of Theorem 13. Applying Lemma 14 gives

dH [ 4G ou

Substituting the equation and applying the Gauss theorem yield
_ /Q (g) ((%+ %) %) dxdy
[ (G i) (e)acars [ () s mas
[ ()25 (55 axey,

and hence

d / G(u, uy, uy)dxdy = 0. O

4.2. The dissipation/conservation properties in the computational space

In this section, we extend the discrete variational method to multidimensional nonuniform grids, such as that shown in
Fig. 5. We assume that the number of nodes is (N + 1) x (M + 1). As in the one-dimensional case, we use the mapping meth-
od. Firstly, we describe the proofs of the conservation/dissipation properties in the computational space with the coordinates
(¢,m), and then define the discrete variational derivative and the schemes.

In the computational space, the partial derivatives are transformed to

ov_ (0 Oy o\, Ov_ . (0x0 oxd
ox (811 & o 811)”’ ay*] (azan anag>”’ (32)

where v is a smooth function and J is the Jacobian

]det(a; d;)
o o
Note that the partial derivatives are also written as

ov_ (0 [0y o (dy ov (0 (ox \ 0 (0x

o= (e ) —an (7)) &= Gn(5e) 2 (@0)) 53)
since Xey = Xye, Yoy = Yye-

Using these formulas, we rewrite the equations in the following forms that are suitable for the discretizations. The dis-
sipative equations (44) are transformed to

ou oG
(). oy

n=M

n=20

Fig. 5. An example of nonuniform grids in R?.
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if s=0, and to
CRRENE TR ) O (Wm0 oy 0y (i
ot ¢ o o¢  9¢E om o on on o¢  9¢om)\ou/
1[0 [(ox [ _1(0x O 0Ox O\ [0G X (. _1(0x 0 0x 9\ (oG
” {%(a—cs(f <8_58_11_8_n8_5>( D)) (%(’ GFon—anoe) ().)) } 5
if s = 1. The conservative equation (47) are transformed to
([ (W0 Dy 0)(00) (X0 DX 0Y (06 | {40 (v (0CY ) D oy (96
ot 2 on o& o0& an o oc&on onotj\ouj ot\on\ou/.) om\oc\ou/
1[0 [0x (6G 7] oG
” (%(a?(@u)*a?(a?(@)c))” %)
(6G/du),, is the transformed variational derivative

(50). =5~ 07 Ge o) ~an (G )+ (G (G ) - G ) &
ouj’ T ou 9E \0n Ouy on \0¢& Ouy on \9¢ ouy, o0& \on ouy ’

Theorems 12 and 13 are transformed to the following.

Theorem 15. Suppose that the boundary condition satisfies
E=N

[ (LG,
LJo Ot \ou,on duy, on ;7

Suppose also that

Nou (G ay oG ox\ 1"
*[/ o <aux a*f*a@a?)df] LY (58)
r oM <§> (]’ (375,3737);3)(06) gy ]<%£7%E>(§> g)d &N
_/0 ou/ on o 0 on on oz on o og)\ou)  on n o
N OGN (4 fdy @ Ay D\ (6G\ Ay . (9x & x 9\ [6G\ ax\,]""
L @) G &) G o) (5).7e)],L, =0 59

if s = 1. Then the solutions of (54) or (55) have the dissipation property:

¢=N
dHes <0, Hg(t / / G(u, uy, uy)J dédn.
dt 10 Jeo

Theorem 16. Suppose that the boundary condition satisfies
/Mau 9G oy 9G ox\  1° . /Nau 9G ay oG ox\ "
o ot \ou, on oy on) | T o ot \ou, 96 " 5w, 92) %), ,
MosaNE fay ox\, 1 [N aG\E fay axy ]
o e L T .
{0 o on 1 Jo oc o¢ CW:M o

Then the solutions of (56) have the conservation property:

=N

n=M ¢=N
0. Hot)= [ [ Gwuow)dzan,

Remark 7. Conditions (59) and (60) in the computational space correspond to the conditions (46) and (48) in the real space,
respectively. The curves that are defined by ¢ = (const.) or 1 = (const.) form the boundary 9Q. Moreover, ds = +d# and

= +(8y/dn, —0x/dm)" on ¢ = (const.), and ds = +d¢ and n = +(9y/d¢, —8x/d¢)” on n = (const.), which show the equiva-
lence between them.

For the proofs of these theorems, we prepare the Gauss theorem transformed to the computational space.

Lemma 17. Let u, v1, v, be smooth functions that satisfy

=N

M ay 8x> }“’
ul v v, — |d
Uo ( Yo an) M,

=0

N y ox
|  —o 61
o[ u(nFug) QLZM (1)
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Then
/'7 ' /::N <7/]7] (ﬁg—@3>u+ v ! (%3_%2%)](“1
o Jeo \°7 \on 09¢ 0¢ an 9 oy~ on oz <dn
N dy a (dy o (ox 9 /ox
- u — n|—-——(=v + % —|=v dédn.
-/'1:0 ./c:o (J <8¢f (811 1) (85 1)) s <8n ( 2) ER (an 2>>>] <an
Proof. We can obtain this lemma by application of the integration by parts in the ¢ and the # directions. In fact,
e ay o dyd (XD ox D )
Lo L (0 (e gt ) 2 (5 o e pecen

_/ CN(z} (8}/2,8_'}/ a)u+y<%£,%£>u>d“d
" Jio o an 9~ 9 oy azan on oe)")

&=l

B =M pé=N (8 [dy ay 0 [0xX 0 [0x .
o L0 el ) o)) o G o) - ()
n=0

M dy =N N dy ox
& d D0, %)d
*M ”(”lan n) "Lﬁ{/ ”(”‘aé ”W) 5LM
=N

LA G ) ) (3 () -4 e e

Next, we transform Lemma 14.

n=M E=N 9 5}’ r rM ay &=N
=— U— (== uv; |dédny + / —uvd}
/’I:O [0 0¢ <8’7 1) =4 LJo N ' &=
n=M =N 9 ay r N ay n=M
+ u— (= v |dédny — / —uv dé}
/}]:0 /5:0 on (05 1) 1 Lo 9™ n=0
MM N g ox [N ox =
- U— = v, |dédny + / —uvd}
/,10 /0 811((% 2) RV T
M N ax [ M o o
+ U—— vy |dédy — / —uvd}
[ L, o (o acan= | [ 55 Mo
= 0
n
0

Lemma 18. Suppose that a solution of (44) or (47) satisfies the condition

M &=N N n=0
[ (S0 )y [ (02 m"
b Su, o ou, on o \Oux 9& ouy 9&) 7|,y
Then

dH =M =N 8u< )
— = déd 62
dt /,,:0 /5:0 at Jdcdy. (62)
Proof. By the chain rule, we have
oG Bu oG ouy = 0G duy
dt dt/cd dy = /(au ot " ou, ot ou, ar)d"dy
=M =N 56 ou =M =N a6 s dy ou, 9y du, ox du;  Ox du,
[0 Lo maiecans [ [ @ Grae gt an) toud (@ oy o ot) Jocon ©
By applying the transformed Gauss theorem shown in Lemma 17, we obtain
B NG ou =M =N oy d (8y oG dy 0G (0 [0x 8G a9 [(0x OG
L L e [ G G ) o () )+ G (e~ () ) Jrocen
=M N gy (0G = ay G ay oG [0 [0x OG\ O [0x G 5
o L a0 (ac (v o o))+ (o () 32 (wn, ) ) e
n=M =N
L) e

Now we can prove Theorems 15 and 16.
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Proof of Theorem 15. By Lemma 18, we have

L

In the case of s = 0, substituting Eq. (54) yields

n=M pé=N 5G 2 }
»/'l -/5:0 (E) Csjdg dn s 0

In the case of s = 1, substituting Eq. (55) and applying the Gauss theorem in the form of Lemma 17 yield
o=, [ M EGEGE R @) -# @ Gr-gn @)
Iy Jemo o&E\on on & 9¢ on s an on o¢  9&an o
1[0 [(Ox [ _1(0x O Ox 9\ (G O (OX (. _1(/0x & 0Ox 0\ /[6G oG B
o o G G mae) (6).)) -2 (o 0 Gean—awae) () )] () sacem
=M =N gy 9 dy 0 (6G\ 2 /X 0 ox D) [OG\ \?
1 1
I Lo {(f o) &), 0 G (&),) pacan<o o
Proof of Theorem 16. Applying Lemma 18 we have

[ L () g

Substituting Eq. (56) yields
o Ll G @), G ma) ().
()4 (9)) 0 (D) G EINE

Application of Lemma 17 yields
o Lol GE ) -5 GG GEE.) -G )

G R, (52 () g

and hence, this equals 0. O

4.3. The discrete Gauss theorem on multidimensional nonuniform grids

In this section, we provide a discrete counterpart of the Gauss theorem. As is seen in the Proof of Lemma 17, the Gauss
theorem in the computational space is obtained simply by applying the integration by parts in the ¢ and # directions. There-
fore, the discrete Gauss theorem is obtained by applying the summation by parts in each direction.

First, similarly to the one-dimensional case, we introduce a boundary term operator to simplify notation.

Definition 4. Let 6: and J, be finite difference operators in the ¢ and # directions, respectively:

o B
5:Uij = z aUikj, 0yUi5 = Z biUijk-

k=—o k=—p
We define a;y, a;,, bj. and b, by

i {a,m< (k=i—-oi—o+1,...;i+a—1,i+0),
ik =

0 (otherwise),
iy = =0k
B {b—j+k (k=j—Bj—p+1,..j+p—-1j+p),
" 0 (otherwise),

.
b = ~by;.
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For Ujj, V;;; and V,;;, we define a boundary term operator Ho0.5. 3y x: 3 5: 9y) ({Ui_j}, {V1j}.{V2i;}) by

N+o
H00.6: 6.x: 30.9:9) y({Uik AViih Vi) - Z Z Z Wij u( yn)ualkvl ki~ i}'l (Xﬂ)ijai-ICVlkJ)
j=0 i=N—-o+1 k=N+1
M
+ Z Z Z WUU’J( ij yn)ua‘kvl ki — z]] (Xn)i_jai,kvz.kj)
j=0 i=0 k=-o

M8

M ~
Z Z WIJUIJ ( x()[jb] kV21k - Wijil (yg)i‘,'bj‘kvl,i‘k>

Jj= /3+1 k=M+1

+

>
i=0
N ~
+ Z Z Wl]”lJ( Xe)ihirVaie — wi' (v ;“)i,jbj.kvl‘i,k>
i=0 j=0 k=-p
M N N+o
1 ~ 1 ~
+ Z Z WijUyj (Wl.j k@ Viij — Wi (xn)lqa;kvli-j)
j=0 i=N-o+1 k=N+1
M o-1 -1
1 =
+Z ZWUU/U( i @iV — wi (Xﬂ)k,jai,kvli-j)
j=0 i=0 k=-u
N M Mg . ~
—1 * —1 *
+ Z Z Z wijUik (Wu (x)ikb;Vaij — Wy (J/:)i,kbj.kvl.ij)
i=0 j=M /f+1 k=M+1
N p-1 -
wrl *
+ Z Z Wi tk( )lkb]kvz ij — Wi (yi)i.kbj.kvliJ)'
i=0 j=0 k=—f

When U;j, Vi;; and V,;; approximate functions u, »; and v,, respectively, this value approximates the boundary term
(61) in the Gauss theorem.

We can now state the discrete Gauss theorem.
Lemma 19. Let 6 and o, be finite difference operators in the ¢ and n directions, respectively. Let U;;, Vy;; and V,;; satisfy
Beoos. oy xexyeyy {Uiik {V1ij} {Vaij}) = 0
Then

=- ZN: inJ<V1.quf <5Z<(y,7)uUi.j> = Jy ((ycj)i,jui-j>> + Vo wij (52((X<)UU,—J> —0; ((Mhﬂu))) (65)

<

N M
D> iUy (Wit ()10: = 01500 ) Ve + Wi ((Xe)ygon = (k)2 ) Vi)
M N N
= Z Z ZW,JU,-J- (ijl (yn)ijakavl=kj — ij] (x,,)i_jdi,kvzykj) + (boundary term corresponding to J;)
j=0 i=0 k=

0

M ~ ~

ZW{JUU (wu1 (X¢)ibiaVain — w[jl (yé)ubj,kvljo + (boundary term corresponding to d,)
M N N

-— Z Z Z wi;Uy; (w,;} V)jGiVis — Wi (xn),(JEl;{sz‘i.O + (boundary term corresponding to d;)
j=0 k=0 i=0
N M M .

=33 wili (wi_,( (Xe)iubi Vais — Wik ( i)i_,(b}kvl,ij) + (boundary term corresponding to d,)

i=0 k=0 j:

=- XN: zM:Wu(VwWEf (52((y11)ijui,i> - 52(()’;%#‘1)) - Vyw;)! (52 ((th)i_juij) —0; ((Xﬂ)i.juij)))

i=0 j=0

+ (boundary term corresponding to d:, d;, dy, o;;)
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The straightforward calculation shows that the boundary term equals g ;. 5, x. x,y.y,) ({Uii}: {V1ij}, {V2ij}). Therefore,

=- XN: ZM:WI‘J‘ (Vl‘i.jWiT,'] (5* ((y”)i_qu) =& ((Y¢)ijUiJ)) —Vaiwy! (5,7 ((Xi)uui.j> -0 <(Xﬂ)ijuij>))' U

i=0 j=0

4.4. Definition of the discrete variational derivative

In this section, we define the discrete variational derivative on two-dimensional nonuniform meshes. Similar to one-
dimensional case, the discrete variational derivative is defined so that it approximates the transformed variational derivative

& _0G I 9 (oy 9G 9 (9y 9G +],12%% _ 0 (ox 9G
oul. . ou 85 6‘11 8ux 811 8; 8ux on \o¢ au, o0& \on ouy, '
We assume that the energy functional G(u,uy,u,) is given in the next form:

G(u, Uy, uy) = Zﬁ )81 (t)hi(uy), (66)

where fi’s, g/'s and h/’s are differentiable functions. We define the discrete energy functional Gd(U“”)i_j by

B [zKl:fl (U‘(T) < Z g,(( ! O)imidzim = W (J’f)l,m,i.jén,z,m>U§;))
(W5 (X )umidnim = W ()i ) UES) ) (67)

and the discrete total energy H™ by

N M
=D > wiGa(U™),;. (68)

i=0 j=0

Definition 5. The discrete variational derivative of Gd(fJ(”))i j is defined by

5Gq Kop ( 9Ga ) | 9Cq
= = = v —= = - W;; 621, (y’ )L W\ S (e pm
<()(U(n+1) U(n)))u ; M, r; aUm+) ym) Imij N o v 8(U§<n+1>7 U’(fn)) Lm,ij

9Gy B 0Gy
5 v.) (7 —wil| e X imij | 7=y
nLm &)lmij Srl) ) ij nLm </Lm,ij Fi(n+1) 7y(n)
a(U" ’UX) Lmij B(UY ’Uy) Lmij

- Gy
—0%im | Bnimij (W) ; (69)
Imiij

where

0Gy 1 df; 1 1 S (n+1)
(i), = <a<uu> (Ot = 00 U5 )

hl Wi

1 1) 1 ; 1 1
(X2)1mijOntm — X'i 1mijOetm U * ) +gl<<W1J VimijOeim — Wy (J’:j)l.m,i.j‘sn,l-m)Uf‘?+ )>

1
ij Iml] ’71"1_ X’ilml] Lm U

=

(Wi

> +g1<(Wi}] VdimijOeim — Wijl e )lmuénlm)ug)>

(( Ui

(( in)

1<(Wl Im ij '1 Lm — Im 1] m>U‘7+] ) + 2gl ((WG] (yn)l,m,ijéi.lvm - W;j] (yi)l.m,i.j(;Vl-,’-,m) Uz(;'))
(( )ui)) 70)

=

1
ij lmu ﬂlm_ X’?lml] &lm

hl w;
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Gy 1 (n+1) 1 ; -1 5 (n+1)
W =5 (2f1 (Uj )hl<<wij (X)im ijOnim — Wi (xri)z.m,i.j‘)él,m)uij )
oo Lm,ij
1 . _
+fi (U,('H )>hl ((Wi.jl (Xe)ymiOntm — Wul (Xﬂ)l,m,i,jé’i-l-m) Uz(,]))
_ . 1
+h (U,('n)> hy < (Wi,i] (X&) miOntm — Wi (Xn)l,m,ijéi,l,m> U;T ))
+2f (U™ Yy (Wi (%) :0mam — Wit (%) i i0cim ) U __d& (71)
I\Yj I ij \*¢)Im,ijonlm ij \An)imijoclm Y Fnel) i) ’
d(UX P > m,ij
8Gd 1 (n+1) -1 —1 (n+1)
W =6 (2f1<Uj )&((Wu Vi)imijOeim — Wi (yé)l,mjjé'r’m)Ui,j )
yoo=y Lm.ij
1 - < _
+fi (UJ(-H )>gl(<Wu1 Vimijocim — Wi.j] (y:)l.m‘i.jéﬂvl-,m) Uf?)
. _ 1
+fi (U}m>gl ((Wi.j] VimijOetm — Wi_jl (}’5)1‘m.u5n.l‘m) UET ))
2f, (U™ -1 Sem — Wit Sy ) UMY) [ 72
+2f1(U;7 )& (Wij O)imijOeam — Wij (Ve)imijOnim ) Ui a(Gr g ) (72)
( Y Y ) m.ij
fl <U£n+l)) *f[ (qu))
df e (UG A U). (73)
S | B — i i
o=y, gm)) -
& (Uf?) (otherwise),
g ( (W{j] U/r])!m.x.]éf.l.m’wal Ve)im.ijon l.m) U,(;m) -8 ( (W{j] (yv])!m.x.j(;:.l.m’wfjl 0e)im |j‘5,1.1.yn) Uf_?) (if the denominator = 0)
dg1 = <W,7jl W)im,ijoe l.m’wal (Y;)Lm_i_jéq.l.m)U:‘:"m*<W,]1 Wyim ij‘silm’wi]l We)im,ijontm U,(T 7
d(*}({nﬂ). ”Ln))
: mij - B .
(%i <(Wi_j1 V)imijOetm — Wijl (yi)l.m.i.j(;’i-lvm) UE;”) (otherwise),
(74)
b ((WGI () umpdm=Wi (im0 "'") Uy’ 1)) M ( (W’Tfl (umijonim W' o )'»"'-”-f‘s“'"> ”i(?) (if the denominator # 0)
dh, — (W[Jl (X m.ijOnLm *W,-’Jl (Xn)imijoc m) U;;H)* (ijl (%) 1m,i ol m*W,fj' (Xﬂ)l,m.lj‘jé.l.m) U,(;) '
d (U‘E/HH). U;/n))
m.ij dh _ N — i
au, ((Wu] (Xe) 1 mijOntm — Wi.j] (Xﬂ)l,m,i,iéil,m) U,('])) (otherwise).
(75)
The discrete variational derivative is carefully defined again, which provides the variational structure:
Lemma 20. Suppose the condition
(n+1) (n)
u {Ui.j - Uy } 9G4 9G4 _0
(02,06 1m0 tm X)L i X im i Vi j Vim i) ’ - - ’ - - -
Lin:On.l L Xn)im i Ve mij> Wy im.ij At 8( )((nH)’ULn)) . 8<U§,"H)7U§,")) B
\m.ij Lm,ij
(76)

is satisfied for each | and m. Then

U("+1) _ U(n)

1 (H(n+1) _ H(n)) _ i iw__ ij ij 0Gq (77)
At : Y At s(Um+n) gm) U'

T
o
.
i
o
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Proof. From (70)-(72) we have

2 2 iwﬁi %1 (fl <U(n+] )(&((W; Vi)imijoctm — ijl (yi)l.m,ijéﬂ,l,m)ugm)
i=1 j=1 I= m=

( i (X 1mijOntm — Wﬁjl (Xn)l.m‘i.j‘sé,l,m>u$+])))
—fi (U ) & ((Wﬂjl Vi)imijoctm — ijl (J’Lf)l,mjﬁml,m) Ug?)

hy (Wf'l (X&) im,ijOntm — ijl (X’i)l,m,i,iéi-l-m> Uf?)))
Cgngh g g (U U (oG
; i At 8([]”*”, 0(11)) i

umn g G
—1 ij ij d
95 (O ~ (yé)'»mifs'”*m)( AV
X » X Im ij

umty g G
—1 ij ij d
Wi <(Xf)’m=”5””~’" R )( At 8(U(n+1) U(m)
YT ) iy

Applying Lemma 19, we obtain

B zN: zM: ﬁ: WU M <U5‘7+1) _ Ufj)) < oG d ) Wfl 5t (y ) (‘)Gd
= — = = = Wi\ Cetm | Vdimij\ 7= )
£ I At oI Um) /| T e S(U o an>> Lm.ij
* 9G, ”“ - 0Gq
_6,1,1,m V) imij (8((79”1), ) ( - Wy 5r1!m (Xi)l,m.i,i W )
Im,ij Lmij

i} aGd n+1 U(nH) U,(l;) 5Gd
—=Oeim | Kn)imij — ZWU — = . O
- a(U(”*”, sy gy |
y Lm,ij Ly

4.5. Design of schemes for the dissipative equations

<

We define the scheme for the dissipative equation (44) by

Ut -uy 6Ga
SN L (78a)
At s(0m+n, 0m) )

if s =0, and by

ur
T = W;J]bf ((yﬂ)!]( ((yi])l] (y()u )) (5( n+1 ﬁ, )) )
"
ij

+wij's, ((xa,».,»(w,-.f((x:) ~ () (
w;'s; ((xﬂ),-j(wi_jl((x:)u )ijoc (5 o ﬂn ) ) (78b)
ij
ifs=1.

Theorem 21. Let w;;’s be positive. Let U be a numerical solution of the scheme (78a) or (78b) under the boundary condition
that satisfies the assumption of Lemma 20 Suppose also that
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0Gq . . - 0Gq
H 00,6, 60,3600 0D 0p)ig) ({ (5(@””) ﬁ(n))> }7 {Wk} ((yn)kjbi - ()Q)k_j%) (5“7 T ))> }7
’ ij ij
_ 0Gq
{Wk,} ((Xé)kjéﬂ - (Xﬂ)kjéf) (75(0(n+1) U<">)> }) =0
) ]J

if s=1. Then

Alt (H™ ~H") <o,

Proof. This theorem is obtained in almost the same way as Theorem 15. By Lemma 20, we have

1 Ny Uit -uy 3G
L Hn+1 ij _ d_‘ )
At( ) Z;W’J( a0y, gm)y )

J

In the case of s = 0, substituting scheme (78a) yields

2
N M 5Ga
- w; 7_, S 0
; J:ZO i (( Umn+1) U(n)) ij

In the case of s = 1, substituting scheme (78b) and applying Lemma 19 yield

5Gd " N 5Gd
Wu(m)J( o <(J’q)u< ((yr,) (J’;)u"n»(m)u)

an (W,Tﬂ ((%1)1155 - (yi)u(sﬂ)) <5(U(nilc: Jgm)

(81) =

T
o
-

Mz
.Mg

_.
Qq
%

—W:

<
—_
e

+
§
=

/\/\/_\ L

5
—~
=
=1, B
—_
s &
=
=2
~
~
N
=4
Sutt
Tl
=1
I~
S
=

Il
|
=
)=
=
-,
/
5
—
<
<
=,
<
=
=
SN—
RS
=g
jsutt
Tl
=)
(=%
S
2

T
Sy
o
Il
o

=
=
/~
=
<
—
x
RS
=
=
<
<
S
SN—
SN—
RS
<
<
Fle
=i}
- - [=% -
i < !
=
N—— i/ N—— ~—
Loy
N~ ~— T~
v

4.6. Design of schemes for the conservative equations

We define the scheme for the conservative equation (47) by

Ui’ -ug 1 : : 3Ga
T =5 (Wi.j] ()ij0: — Ve)ij0n) + Wijl ((Xe);;0y — (Xﬂ)i.jéif)> (m) ’

. Gy N
+W,»_j1 ((35 ((yn)i_] (M) jj) — 0y ((ycj)ij (M) U) )
B oG, oG,
+Wijl (5:7 ((Xé)ij <5(0T;jﬁ(n))> ' ) — ¢ ((Xﬂ) <de(n))> ' ) ) }7
4 ij [N}

where §; and 4, are the central difference operators in the ¢ and the # directions, respectively.

(79)

(80)

(81)

(82)
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Theorem 22. Let U;p be a numerical solution of scheme (82) under the boundary condition that satisfies the assumption of
Lemma 20 and

Gy 0Gy 0Gq _
Frog.sc e ey ton)g 023z rig) ({ (5((]<n+1> U<n>)> _ } { (5(U(n+1) f](n))) _ _}7 { (5(U<n+1) (](n))) _ }) =0 (83)
3 ij ) ij ’ 4]

1
At

Then

(H™Y —H") =0, (84)

Proof. This theorem is obtained in almost the same way as Theorem 16. Applying Lemma 20 we have

1 N M ymh _gym 5G
= (gl g iy ij d
At (H H ) Z ZWu( At 5((](n+1)7 g(n)) ij.

1 N . B 5G
5Gd _ 5Gd
+wj! ((3 ((yy,)u< G, ),,) — 3y ( Ve)ij (M) ij)) +w! (5;7 ((Xg)u ((M) U)
(5Gd

Applying Lemma 19 gives

1 ¥ 5Gq - 5Gq . 5Gq

2 ; ;Wu < Jn+1) U(n)) U{Wz‘ﬂ (5,1 ((ch)ij <5(0<n+1—)7 U(”))>U> — 0 ((Xn) <—(0 ) g )>u> )
oG, . oG

+W 1 (5 (y” ij n+1)d U(n>)>u> — 5,7 ((yi)i,j (m) U)) ( ((yn)zj 14 (yf)u '])

lJ 'l Xn U(Sﬁ)) (((jﬁ?df]n)))u}.

Since ; = . = o = J; and 6, = 6. =0, = 6*, it follows that

(H (1) _ o)) _% ZN: XM:WU (m> | { (wi—J_1 ((yn),-ﬁ: - O’E)i.j(;ﬂ>
ij

i=0 j=0

_ . X 0Gy N N en
) ((Xf)iJ'o’F(X”)f-fbﬁ)) <5(Fj<n+n FJ(n))) Wy (05 ((y”)” <5(Cl<n+1) fj(n))) )
k) ii k) l]

1 5. o
+WLJ ( ¢ (0’7])1.} ()(UHH) U”))

)( ()0 = 000 ) + u1(<Xg)iJé,,—<xn>ijag))(w%%m)w},

and hence this equals 0.
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5. An example of the two-dimensional case

As an example of the two-dimensional case, we derive a dissipative scheme and show a numerical result for the Cahn-
Hilliard equation

ou_ oG LD Te [ (0w), (u\
{-)t_A(Su’ G(u,ux,uy)_zu +4u AR + ay . (85)

5.1. An energy dissipative scheme for the Cahn-Hilliard equation

We first define the discrete energy functional for this equation. The energy functional G(u, uy, u,) is written in the form of
(66) with K = 3 and

filw) =St Jut, f =1, fiw) =1,

St =1, &) =T, gw) =1,
hu) =1, hy(u)=1, h3(uy):—%uj

We introduce the discrete energy functional so that it corresponds to these. On the given mesh, we introduce the
weights by

Wij = (Xe0)ijVno)ij — Rne)ijVec)ijs

gy ML XL) YO L) -y )

gy = TN YD —yGi=T)

The following difference operators are used for the discretization:
557+U,‘J = Ui+1.j — Ui_j, 55_,U,'J‘ = Ui_j — Ui—l.j; 5,1=+Ui_j = Uij+1 - Ui‘j7 5;7.7Ui‘j = Ui.j - Uij—1~

For I=2, M, =4 is set and g, is approximated by

1 R 2 . 2
L) = ~Jul =~ ((wa‘((yﬂ.c>,-.jég,+ = e U )+ (Wi (0 0)ig0es — Waedigon UL )

2 2
‘*‘(ij] (Wne)ijoe- — (y;“.c)ijéﬂ#)uz(g)) + (Wff (Wye)ijoe- — (yc:c)i.j‘élw)ug)) )v
which gives
(y:f)z‘l,u 0’:)221] (y()23l] (y<)241] (ch)xy

(yrl)211,1 (yn)22u (yn)23u (yn)24zj (ync)uv

0g21 =022 = Oy, 0c23 = 0c24 = 0c, Oy21 =023 =O0p4, Op22 = 0p24 = Oy —.

Similarly, we set M5 = 4 and approximate h; by

q — n 2 — n 2
M 2 ((Wu]((xé.C)ijéw - (Xn.C)ijfsci.Jr)Ug_j)) + <Wu1((x<?.c)ij5m+ (Xnc);j0c.- )UEJ))
2 2
+<ijl((xi.c)u5n,— - (Xﬂ.C)ij5§.+)UE;)) + (Wﬂl(( tc)ijOn- — (xn,C)i.j&i,—)UE;)) )v
which gives
(Xe)314) = (Ke)324) = (Ke)335 = (Xe)3.45 = Kec)ijo

(X)s1ij = Kn)s2ij = Kn)szij = Ky)saij = Kno)ijs

0¢31 =033 = Oy 0g32 = 0c34 =0, Oy31 =032 = Op4, 033 =034 = Oy —.
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From the above, the discrete energy functional is defined by
~ P2 T/t 1 g ~ 2
Ga(0"); =5 (UF) +3(U5) 353 ((w,f (0n)ie = Deodydns )UY)
(0 (005~ Vcdydn JUR) + (W (Oelde — GeogonUS)
(Wit e = 0t U5)) = g 3 ( (W5 Gddns = eyt U )
( ) 4 (Wi (et — agoUD)

+(W;J ((xivc)iliéflf - (Xn.c)ijéé.—)U§;)>2>-

+ W, ] ch ;1+ - (Xn.c)ijéi.—)ug

Next, we define the discrete variational derivative by (69). For [ = 1, we set M; = 1 and obtain
Gy P /e (n) r 1)) 3 1)\ 2 5 (1) (170} % )3
(8(U<n+1)7U(n>)>Hij_i(UU +Uij ) *3 (UfJ ) * (Uu ) Uij + Ui (Uu) + <U1J> ’

( G, ) B 9Gq -0
W - NETENRNY -
AU, UyY) 11 8<U§’n+])’U§'n)> 1.1ij

For | = 2, we have already set M, = 4 and obtain

(8(U(ﬂa “)d"))) *Wﬂil ((yW,c)ij55,+ — (y )115'7 ) (U (n+1) )
X 2 l'
2 “’f_J1 ((}’ﬂ,c)i,ib‘g.+ (yg.c),-_,-én,f) (UE;H) 4 U]@;}))’

q . .
*iwij] <(yn,c)ijbi,— - (yg:c)u‘)nf> (UE;H) + U;;))v

(o), =B i ) o <o)
X El

(%) (% ) —0 m-1.23.4)
aUum gm) ), 8(U§”*>,U§">> -
;mij

In a similar manner, for [ = 3 we have
090Gy q. 1 N s (n+1) (n)
(a(mum)) = =i (selyd = (onelyds) (U + UL,

= *%ijl((xi,c)ij‘sn.+ - (Mx)i.j%—)(ugyﬂ) + UE;)),

q. .
= —iWij]((Xé,C)ubﬂ.— - (Xﬂ-,C)i,jéé—)(U,(;H) + UE;)),

(se) ‘(%) e
( ) ) 3m,ij 8<U’< ’U"> 3m,ij

Using the above symbols, the discrete variational derivative is defined by

4413



4414 T. Yaguchi et al./Journal of Computational Physics 229 (2010) 4382-4423

57721?: — Wi | O | Oy R H—-
s(Umen, gmy ) - = M ”*” U(")) I Srlins B<U;n+l)’a(n)> Lmij

i Gy
~Onim | U)imi ( (x2) (
nlm &/ lmiij (n+l =i n r]lm </lm,ij S 1) 1i(n)
8<U lmt_; 8( Y 7U"V) Lm.ij

: r 3
~Ocum | Kndimi <6<U§n+1 = - ) ey +U!'?>) +Z((U§3+1>)
)3

Hug Y up g (ug) — 3 (W5 (0c (0w (i = Wedyons )
< (U +UR)) = 60 (0 (@igdes — Oecyon ) (U +UT)))
i (0 (0 Wi (Oe)igdes — Vecdyon ) (UG + U )
o (Wi (W igder = Weeyon ) (U +UTY))
! (00 (0geWi (D)o - <ycc>,doq+>(u 7+ug))
Vec)igWs ((y.”),,acf—cy,c),,a“( U )))

>

E
2
q

—aw((ycc)u G~ e ( ;U ))))
,Q( 0 ((Reh Wi (K hgn — (tyeygoe) (UL +U))

((x”c)uwi’jl((x; )ijéﬂff(xﬂﬁ)i_'éi,*)( U )))

(00 (o)W (g~ (xn,a»-&-»(U-'?“+U~))
=dc (Wi (s hydns — Gpeygoe ) (UG +U)))
w,1(o,,+ (Xec)i Wi (%0); 5,1,,—(x,7‘c)~-6:+)(U-’7“ +U..>>

B ((nelg Wi (Keehgon — (ne)ygoe ) (U +UT) ))

.
)Wt (X

+W;;

+

+Wi; <5n,+ (xéC);JWu ((Kec)ijop,— — (Xn,c)"(;“—)<U-’?H + U»- ))
5<+((X'1c ijWij ' ec)ijbn- — (X'?-C)i.jéif)( Ut +U ))))
The scheme is defined by (78b) with, for example, é; and ¢, being the backward differences d:_ and 4, _:

%;U'(T = Wi_jl 55,+ ((yn,c)ij <W[11 ((yn,c)ij(si,— - (yieC)fJ6’7‘7)> (W)l )
’ J
— W,‘Tj15ﬂ.+ ((y )Ij< ((yﬂ C)U & (yi'C)iJ5W‘7)> (wmilc;iljm)l )
’ ij
Fwls,. <( s (w ((Xee)ijOn— — Xy Jéc;f)) (ﬁ%) )
’ ij
— WEj] Oct ((Xﬂ-c)ii (W;Jl ((X‘E’C)faién" - (X"‘C)"‘iéi'i)) <

5.2. Numerical example

We solved the Cahn-Hilliard equation on the annular domain €, as shown in Fig. 6, using the scheme derived in the pre-
vious section. The parameters of the equation were set to p = —1, ¢ = —0.001 and r = 1. The domain Q is represented as
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Fig. 6. The mesh used for the computation.

Q={(x,y)lx=pcosh, y=psind, 0.1 <p <0.7, 0<0<2m} by the polar coordinate. We used the grid shown in Fig. 6,
which is written as

_ 2m
o 00 = (86)

in the computational space. The number of nodes are 30 in the ¢ direction and 40 in the # direction. We set the periodic
boundary condition in the # direction and

X(E) = p(e)cos(Oun), y(Em) = p(&)sin(0n), p(&) = 2

M _o 2wy =0

PR o¢ (87)

in the ¢ direction. Under these conditions, the solution has the dissipation property. Additionally, the Cahn-Hilliard equation

describes the phase separation and the solution u denotes the density of the materials. Under the above conditions, the total
density is also conserved:

d
a /Qudxdy: 0.

The initial condition is set by

u(0, ¢, 1) = 0.001 sin(107(r(¢) — 0.1)) + 0.001 sin(70(n)). (88)

As a naive method, it is natural to employ the implicit Euler method in time and the central difference that approximates
the Laplace operator in the polar coordinate

s L1o 1 i
opr pap  p*ao*
Therefore, we compared our method with this naive method, using MINPACK to solve the nonlinear systems.

When the naive method was used, the scheme was unstable, even with At = 107", This result is due to the fact that the
naive method does not retain either the energy dissipation property or the conservation of the total density. Both the total
energy H"™ and th